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Value-Added Models for Teacher Effects Aim to
Separate Teacher Inputs from Student Background

[] Goal of value-added models (VAM) for teacher effects:
m Use longitudinal student achievement measures to distinguish
teacher effects from the effects of student background variables
L] A problem of causal inference with observational data

B Teachers teach nonequivalent student populations

[] Inferences necessarily depend on statistical model assumptions
m Different modeling approaches have developed rapidly

m Literature has identified sources of potential bias in estimated
effects and has begun exploring robustness to modeling
assumptions
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This Work Focuses on Testing Robustness to Two
Assumptions

1. A single, scalar teacher effect rather than one that varies
across students is sufficient for inference

2. Missing test score data are “missing at random”

[l Issues are seemingly unrelated

[1 But a single modeling strategy is capable of addressing both
of them
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History of Achievement Outcomes Contains
Substantial Information About Individual Students

[l The goal of VAM is to separate this achievement profile into what is
due to the student and what is due to schooling

[1 The part due to the student is the best indicator the data can provide
of how the student would perform regardless of context

[] Our models try to capture this “general achievement” information
about each student and use it elsewhere in the model:

1. Letting the effect of each teacher on each student depend on that
student’s general level of achievement

2. Letting the probability of a student missing test administrations
depend on that student’s general level of achievement
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A Value-Added Model that Parameterizes the
General Level of Achievement

L1 Presented here for simple case of a single cohort of students tested
In consecutive grades (years) in one subject

L] Y;, is scaled score for student 7 in year ¢

L] 6, is the latent measure of student i’s general level of achievement

Yir =p1 + 013y + 0i + €

Yio =p2 + 21013y + Oz + i + €32

Yis =p3 + as101(5) + ag2la) + 0305 + 0i + €53

Yia =4 + 41015y + u2bs) + ausls) + Oa) + 0i + €ia

O ~ N(0,77) 6 ~N(0,7°) €~ N(0,07)
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Analyses Based on Data from a Large Urban
School District

[] One of the nation’s largest urban school districts (about 75,000
students)

We analyze one cohort of 9,295 students from 1998 to 2002
Students in grades 1to 5 for these years
Math and reading scaled scores from annual spring testing

Links students across years, to teachers and to schools

1 O OO OO O

Focus on grade 1 teachers in 1998 to grade 5 teachers in 2002
m About 1,500 teachers in total
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Investigation 1. Estimating Student-by-Teacher
Interactions

L1 To date, the array of different VAMs specify a single, scalar estimate
(per subject) of the effect of each teacher

[] Experience suggests that teachers might be differentially effective
with different types of students

L1 General level of achievement (§;) is intuitive as a characteristic on
which interactions might manifest
L1 Primary motivations for investigating interactions:

m Quantifying interactions might inform targeted interventions or
even class assignments (“increasing everyone’s value-added”)

m Strong interactions would have critical consequences for the
types of inferences supportable by VAM estimates
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We Extended the Basic Model to Allow Teacher
Effects to Vary Across Students

L] Teacher effect on student i in year t assuming no interaction:
O1)
[1 Teacher effect on student i in year ¢ allowing interaction:

0o.¢(i) + 01,1350
(average effect + adjustment for each student)

L] Effects modeled as bivariate normal, with variances and correlation
estimated from data

[1 Embedding the interactions into the model was challenging
B Needed to assume a4 = 0: no persistence of teacher effects

B Not a costly assumption because persistence appears to be weak
with these data (o ~ 0.1 to 0.2)
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Results Provide Evidence of Interactions

[1 Model successfully implemented in Bayesian framework using
WinBUGS software

[1 Two preliminary findings:
1. Model provides evidence of teacher-by-student interactions, with
magnitudes corroborated by exploratory analyses of the data

2. The two effects for each teacher are positively correlated (around
0.5 for math and 0.3 for reading)
m Literal interpretation: teachers who are effective on average are
particularly effective with above average students
m NOTE: This is preliminary and requires substantial further

exploration
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The Magnitudes of the Estimated Interactions Are
Relatively Small

[ ] Potential variation of teacher effects across students with different
0’'s accounts for about 9% of the total variance in teacher effects

B Can lead to correlations as low as about 0.7 between teacher
effects on generally very low achieving students ( -2 SD(9) ) to
teacher effects on very high achieving students ( +2 SD(9) )

[1 However, the impact of interactions on teacher effects depends on
the variation in classroom averages of ¢
®m In the data, variation between classrooms in ¢ is small relative to

overall variation in ¢

[1 Estimated teacher effects across classrooms with very low and very
high average levels of achievement are correlated at least 0.97

[ Conclusion: Interactions appear to be present, but bias introduced
by failing to account for them is likely to be negligible
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Investigation 2: Relaxing Assumptions About
Missing Data

[] NCLB testing participation requirements result in nearly all students
being tested in many classrooms

L] However, all longitudinal student achievement data includes some
Incomplete records
m Often large proportion of records are incomplete
m Only about 20% of students in our data have complete testing

histories

[] Mobility results in students with incomplete records when they are
outside of the data collection unit
B Missing test scores

B Missing teacher links
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VAM Literature Cites Missing Data as a Potential
Source of Bias in Estimated Teacher Effects

[] “When a substantial number of records are incomplete...thereis a
concern that not only will the variance of the estimates increase but
also that the estimates may be biased.” (Braun, 2004)

L] Intuitively, missing scores present the potential for bias when:

B Students with missing scores differ from other students

m Classrooms differ in the percentage of students with incomplete
data
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Students with Missing Scores Tend to be Lower
Scoring When They Are Observed
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Classrooms Differ Greatly in the Percentage of
Students with Complete Data
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Three Different Classifications of Missing Data

[] Missing completely at random (MCAR)

B Missing scores are a simple random sample of all scores

[] Missing at random (MAR)

B Students with missing data can differ from other students but only in
observable ways

m Conditional on the observed data, the distribution of missing data is
same for students with complete and incomplete data

[] Missing not at random (MNAR)

m Missing data differ systematically from observed data even conditional
on observed scores

m MNAR models have not been used with VAM
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We Embedded Two Different Types of MNAR
Models into Our General Model
[ | MNAR Selection Model

B Builds on the fact that lower scoring students are more
likely to have unobserved scores

B Number of observed scores depends on 9

B Estimate parameters of the selection model from the data

L[] MNAR Pattern Mixture Model

B Allows test scores for students with different missing data
patterns to have different means and covariance matrices

m Teacher effects assumed constant across all patterns
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Results from MNAR Models Almost Identical to
Standard Results Which Assume MAR

[l For now have looked only at mathematics data

[1 We estimated teacher effects using:
m The basic model, which assumes MAR
m The two MNAR models
L1 The correlations between teacher effects from the two MNAR

models and those from the basic model were at least 0.98 for
all years

[l Behavior of other model parameters suggests that models are
functioning reasonably

RAND June 12, 2006- 17



Estimated Means from Pattern Mixture Model
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Robustness of Estimates Results from Two
Factors

L] Provided our chosen MNAR models are reasonable, results
add to growing evidence that missing data are not a large
source of bias Iin estimated effects

L1 Why might this happen?

m Analytical work indicates that multivariate random effects
models downweight scores from students with incomplete
data relative to scores from students with complete data

B Data suggest that missing scores are not sufficiently
extreme to overcome downweighting in the context of
specific MNAR models
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Conclusions and Next Steps

[1 Teacher-student interaction models and missing data models
suggest that ignoring interactions or assuming MAR is not
leading to appreciable bias in estimated teacher effects

[ Next steps:

B Vet current findings, including replication on additional
datasets

B Try to work more classroom contextual information into the
models (e.g. classroom heterogeneity on o)

B Expand set of MNAR specifications and develop exploratory
techniques to assess when assumptions about missing
data have the potential to create bias
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